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Influence of nitrogen doping on the radial breathing mode in carbon nanotubes
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The influence of nitrogen doping in semiconducting carbon nanotubes is investigated by first-principles
calculations considering a wide variety of substitution sites and concentrations. The frequency of the radial
breathing mode of a (8,0) nanotube is calculated using density-functional theory and frozen-phonon approxi-
mation for different doping concentrations, substitution sites, and vacancies. The results are compared to a
one-dimensional first-neighbor spring constant model using experimental parameters. We estimate the effect of
doping in Raman spectra by examining the electronic band structure of doped carbon nanotubes.
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I. INTRODUCTION

Carbon nanotube (CNT) properties are directly related to
their particular structure. Most growth processes of carbon
nanotubes (see Ref. 1 for a review) lead to a relatively wide
distribution in diameter and length. Recent studies have
shown how the diameter distribution can be narrowed or how
CNTs can be sorted according to their helicity or chirality.”
Doping CNTs is an attractive alternative to control the elec-
tronic conductivity of CNTs independently of their
diameter.>-® Highly conducting nanotubes are of interest for
applications in transparent thin-film electrodes and other ap-
plications.

In a simple picture, doping CNTs through substitution of a
single carbon atom by a nitrogen atom results in one addi-
tional electron in the 7r-electron system. This additional elec-
tron depending of the CNT band structure’ can induce sig-
nificant modifications of the density of states (DOS) in the
vicinity of the Fermi level.* For instance when the extra elec-
tron is localized in semiconducting CNTs, the corresponding
dopant state is a quasibound state. This quasibound state can
be considered as the one-dimensional (1D) analog of n-type
donors in semiconductors.’

Raman spectroscopy is one of the most frequently used
noninvasive diagnostic tool for CNTs.® Resonant excitations
make the method highly sensitive to individual tubes, and as
a result spectral mapping gives direct access to heterogeneity
and size distribution, important for the development of effi-
cient synthesis processes. One of the important information
available from Raman spectra of CNTs is the spectral band
due to the radial breathing mode (RBM). The RBM corre-
sponds to an in-phase motion of the atoms in radial direction.
Its frequency is inversely proportional to the tube diameter

(d)s
C
wRBM=j+C2’ (1)

C, is added to account for the interaction with the
surrounding.” Due to the inverse relationship between fre-
quency and diameter, the nanotubes need to have a diameter
smaller than 10 A to assign RBM bands to a particular
chirality (helicity) of single wall carbon nanotube (SWNTSs)
(Refs. 10~15) without ambiguity.
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Experimentally, vibrational spectra from carbon nitride
films'® show two dominant bands corresponding to the C-N
vibrations and two bands related to C-C vibrations. The
bands at 1100 and 1470 cm™' have been attributed to C-N
stretching modes by analogy with molecules containing
fairly symmetric tetrahedral carbon-nitrogen bonds (N-N
stretching mode in C-N-N-C configuration). The bands at
1350 and 1581 cm™' are characteristic for sp”> bonded car-
bon. Nitrogen doping in SWNTs is expected to modify the
RBM frequency depending on concentration and the substi-
tution site of the dopant.

The energy of the RBM on undoped tubes has been stud-
ied in detail experimentally and theoretically by means of
zone folding schemes,” spring constant models,'” and first-
principles calculations.!®!31 Several important advances in
carbon nanotube research such as sorting tubes?” or the de-
termination of transition energies of individual CNTs (Ref.
12) are directly related to the observation of RBMs. The
influence of doping on RBMs have been examined using
silver (n doping)?' or applying electrical potentials in elec-
trochemical cells.”> We considered here in detail the influ-
ence of substitution site and concentration on the RBM fre-
quency when doping CNT with nitrogen.

We first describe computational details (Sec. IT) about the
relaxation of the tube structure and the calculation of the
RBM frequencies. We then present the results concerning the
density-functional ~ theory =~ (DFT)  calculations  of
N-substituted (8,0) CNTs and discuss geometrical similari-
ties with previous studies (Sec. IV). We compare the results
of the RBM frequency of doped (8,0) CNTs at various sub-
stitution configurations with a one-dimensional first-neighbor
spring constant model in Sec. III. At the end, we discuss the
influence of nitrogen doping in Raman spectra of CNTs.

II. COMPUTATIONAL DETAILS

To determine the RBM shift with N doping, we have car-
ried out DFT calculations using the Vienna ab initio simula-
tion package (VASP).>>?* The code uses the full-potential pro-
jector augmented wave (PAW) framework.>?¢ Exchange-
correlation effects have been approximated using the PBE
(Ref. 27) functional and applied in spin-polarized calcula-
tions. A kinetic-energy cutoff of 400 eV was found to be
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sufficient to achieve a total-energy convergence within sev-
eral meV considering k-point sampling. All atoms were fully
relaxed to forces on individual atoms smaller than
0.02 eV/A.

We selected (8,0) zigzag CNTs for the model calculations
and considered two primitive unit cells containing together
64 atoms. The tube is oriented along the z axis and placed in
a unit cell sufficiently large in the two perpendicular direc-
tions (16X 16 A2) to reduce interactions to a threshold of
less than 1 meV/atom for the cohesive energy. A carbon co-
valent bond length of 1.42 A has been chosen as a starting
value before optimization. The doping concentration was
controlled by the substitution of one to three carbon atoms
with nitrogen atoms resulting in a maximum doping concen-
tration of 5%.

We have applied the frozen-phonon approximation as de-
scribed in Ref. 10 to calculate the RBM mode with and with-
out doping in the (8,0) CNTs by means of fitting the total
energy for several atomic positions. These configurations
were obtained by moving uniformly every atoms of the unit
cell in radial direction out of the equilibrium position by
*1% and *2%, giving access to the harmonic force con-
stants and the RBM frequency. To compare with the results
of first-principles calculations, we use a one-dimensional
spring constant model which takes into account nitrogen sub-
stitution by scaling of the pristine RBM frequency.

III. ONE-DIMENSIONAL SPRING CONSTANT MODEL
A. Spring constant model

To calculate the frequency of a RBM with a force-
constant model, we need to define and diagonalize the cor-
responding dynamical matrix. For CNTs at least two force
constants are required, bond length changes and bond bend-
ing (k,,kg). Introduction of a dopant leads to two additional
force constants. In the case of armchair tubes, we find that
there is a direct correlation between the eigenvector of the
mode corresponding to the RBM and the G bands. For the
vibrational mode corresponding to the G band, neighboring
atoms are displaced out of phase (antisymmetric) while for
the RBM the neighboring atoms are displaced in phase (sym-
metric). The similarity of the displacement pattern for the
two modes leads to a fundamental relation of their energies.
To reduce the number of parameters we consider here only a
one-dimensional spring constant model. We use the fre-
quency of the G band as the only input parameter and show
below that the effect of doping can be included by scaling.

B. Pristine CNTs

When considering Newton’s equation for a linear chain of
atoms (spring constant k) and considering the vibrational
mode of the G band which corresponds to an out of phase
stretching motion of neighboring atoms with mass m., we
can write for the frequency,

4k

mc

(2)

2 _
wg =

Considering a closed linear chain in circumferential direction
we have
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TABLE I. Summary of the experimentally determined constants
C; and C, of Eq. (1).

C] C2 Ref.
226 12.5 12
215 18 14 and 28
2232 218" 10, 18° 29
207 27 30

Metallic tubes.
bSemiconductor tubes.

1
K tube

ka

1
=D~ Kype=—, 3
gk tube d ()

where a is the bond length and d the diameter. The mass for
a closed chain or tube section is

wd
M e = me )

The Lagrangian £ for a tube section is

1
_KtubeA127 (5)

L 1M -
- tube!” 7

2
where 7 is the speed in radial direction and Al is the change
in the length of circumference. We can rewrite this expres-
sion as,

1 1
L= _]wlube’;2 - _Klube(ZWAr)z’ (6)
2 2
1 1 i
L= Mo = S Kl (An)? (M)

when introducing a spring constant along the radial direction.
Using the Euler-Lagrange equation, we obtain

2

K““gial ka a a

2 tube 2

0} =M g7 =we—. 8
RBM M e wd memd Sq ®

With wg=1581 cm™' and a=1.42 A, the RBM is given by

a 225
wrpy (em™') = w6 =" (nm™"). )
This shows that the frequency of the RBM wgpy, is directly
related to the frequency of the G band wg. By neglecting the
influence of chirality on the RBM frequency we obtain for a
(8,0) pristine nanotube using Eq. (9): wRp(8,0)
=358.5 cm™.

The RBM frequency in function of diameter [Eq. (1)] has
been explored experimentally by several groups. Table I
shows experimentally determined values for C; and C,.

The Cy, as determined by the one-dimensional spring con-
stant model for armchair tubes using the frequency of the
Raman G band and C-C bond length, is very close to the
experimentally found value of C;. C, has been originally
added to account for the interaction of the tube with the
environment which is related to charge transfer or changes in
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the electron-phonon coupling. These effects are not included
in the linear-chain model.

C. Influence of N doping on RBM in CNTs

We modify the previous expressions for the frequency of
the RBMs of pristine tubes to include changes induced by
nitrogen doping. Substitution has the effect of changing the
mass and the spring constant. We assume no modification of
bond length in first approximation.

By defining the atomic fraction of nitrogen as
x=ny/(ny+nc) and by taking the double of a primitive unit
cell of a (8,0) tube (64 atoms) with 96 bonds, a single sub-
stitution modifies three bonds which yields an atomic frac-
tion of nitrogen of 3/96=2/64=2x. We can then replace the
energy of the optical phonon in Eq. (9) wg by an effective
phonon energy °. It has been reported that nitrogen sub-
stitution in carbon'® leads to a localized C-N vibrational
mode (wc.y) in tetrahedral configuration at 1100 cm™'. We
can scale the energy of the localized vibrational mode by the
fraction of the number of C-C bonds which have been re-
placed by C-N bonds. We find after substitution in Eq. (9)
with the corresponding definition of the effective phonon en-
ergy, o=(1-2x)wg+2xwc.N:

ol (1) = wRBM<1 - 2x%) (10)
G

~ it (1 - 0.6x), (11)

where @iy, corresponds to the pristine tube frequency de-

fined by Eq. (9). By including the effect of mass and spring
constant, we can estimate doping effects as a function of
concentration for SWNTs.

We can treat the case for two adjacent dopants by
taking into account five modified bounds. With
x=2/64=1/32 and considering that four C-N and
one N-N bond are formed, the effective phonon energy is
0*=(1-5/96)w5+4/96wcN+1/96wy Which yields a
downshift of —4.8 cm™!' for the RBM frequency which is
slightly larger than in the single substitution case
(-3.4 cm™).

Vacancies have been observed experimentally.’! We can
consider vacancies by removing a single carbon atom
and associating three bonds to zero frequency in the
effective phonon energy by removing three C-C bonds,
®=(1-3/96)wg. This yields a downshift of —11.2 cm™!
for a single vacancy. We can also calculate the effect of a
pyridinelike structure’ in doped CNTs by substituting carbon
atoms by three nitrogen atoms with a neighboring vacancy
site (see Fig. 3). The effective phonon energy arising for this
configuration can be estimated by removing nine C-C bonds
and adding only six C-N bonds. We exclude N-N bonds be-
tween the three nitrogen atoms because the distances are too
large, and we obtain @®=(1-9/96)wg+6/96wc.N corre-
sponding to a downshift of —18.0 cm™' for a (8,0) tube.

IV. RESULTS OF DFT CALCULATIONS

Doping concentrations of nitrogen in SWNTs in the litera-
ture are found to be low so far and lie in the few percent
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FIG. 1. Relaxed geometry of a single nitrogen substitution in a
(8,0) tube. Bond lengths before and after substitution (in parenthe-
sis) are given in A.

range.’>3 We have thus considered two primitive unit cells

containing 64 carbon atoms of a (8,0) tube with a single
(Fig. 1) and several double substitution configurations. The
different double substitution configurations are summarized
in Fig. 2. The vacancy and pyridinelike structure are shown
in Fig. 3. We first discuss the structural constraints and the
energy stability. We then present our results on the RBM
frequencies and compare them to the one-dimensional spring
constant model. We finally discuss the electronic band struc-
ture of doped CNTs.

A. N-induced structural modifications

First studies®*~37 of nitrogen doped CNTs have appeared

recently. It has been stated that deformations induced by sub-
stitution are small and not much attention has been given so
far to structural modifications of the tube wall induced by
doping.?> We show here that structural modifications induced
by doping can have a sizeable effect on the RBM frequency.

We start with a pristine nanotube with a fixed carbon bond
length of 1.42 A. Energy optimization leads to an increase in
the bond length of less than 1% for circumferential bonds
(d& ) and a reduction in the bond length of up to 0.2% for
bonds along the tube axis (d); see Fig. 1. This difference
along the two main directions of the tube is confirmed by
changing the size of unit cell. The same bond lengths have
been obtained with eight primitive unit cells. We assume that
the bond length changes are induced by the tube curvature.

When substituting one carbon atom, the nearest neighbors
are the most affected, leading to C-N bond lengths smaller
the C-C bond length. Modifications in the second-nearest-
neighbor positions are small while bonds along tube axis
(dg:d) are reduced by 2% whereas bonds in circumferential
direction stay identical. We observe no change in the pyra-
midal angle. The pyramidal angle is a measure of the angle
between the o and 7 orbitals,*® @,=10.2°. This means that
the nitrogen atom does not project out of the tube wall. This
absence of any radial displacement is also reflected in the
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FIG. 2. Relaxed geometries containing two substitutions (C at-
oms in black, N atoms in white). The H configuration corresponds
to two N atoms in diametrical opposite positions. Bond lengths are
given in A.

deformation parameter, defined as 6=d,,;,/ dpmax; for pristine
tubes 6=1.0.

With a second substituted carbon atom within the unit cell
we need to consider several substitution configurations. The
bond lengths of the optimized structure, pyramidal angle,
and deformation parameter of all considered configurations
are shown in Table II. The substitution configurations can be
grouped in two subgroups: two directly bound nitrogen at-
oms (in Fig. 2, configurations A and B) and two well-
separated nitrogen atoms (in Fig. 2, from C to H configura-
tions). In all the considered cases, the modifications of the
second-nearest-neighbor positions are small, with reductions
in C-C bond lengths along the tube axis and an increase in
d& ; see Table II. The C-N bonds along the tube axis are
smaller than the C-C bonds while d¢y are systematically
longer than 1.42 A.

In the cases A and B with two associated nitrogen atoms,
there is a relative large distortion of the diameter 6=0.94 and
0=0.91, respectively. The pyramidal angle 0, is also larger

FIG. 3. (Color online) Relaxed geometry of a single vacancy (a)
and a pyridinelike configuration (b) in the (8,0) CNT. (c) Total
valence density snapshot of the pyridinelike structure with a cutoff
value of 1.8e/A3. Carbon atoms are indicated in black and nitrogen
atoms in white.

compared to the case with a single substitution. This shows
that the nitrogen atoms tend to repel each other by increasing
their displacement in the radial direction. All others configu-
rations with two nitrogen atoms show only minor changes
compared to the configuration with one nitrogen atom.

Vacancies in SWNTs have been studied previously,
and it is known that structural reorganization can take place
with the creation of a pentagon leading to a single dangling
bond. The optimized geometry of the (8,0) tube with a va-
cancy is shown in Fig. 3(a). The basal C-C bond length of
the pentagon ring is 1.51 A, longer than the normal sp? bond
length. The carbon atom with the dangling bond is displaced
in radial direction.

Detailed analysis of the N-7 edge by HREELS,* as well
as x-ray photoelectron spectroscopy and electron-tunneling
spectra,’ shows the formation of pyridinelike configurations
which are energetically stable in nitrogen rich nanotubes.
Figure 3(b) displays the optimized structure of a pyridinelike
structure in a (8,0) tube. The C-N bonds are characteristic for
pyridine with a bond length of 1.34 A. We observe again a
repulsion of two neighboring nitrogen atoms due to tube cur-
vature. The two nitrogen atoms are separated by a minimum
distance dyn=2.66 A indicating that no covalent bond is
formed between them. This is confirmed by a detailed analy-
sis of the charge density, where lone pairs of nitrogen atoms
can be seen in Fig. 3(c).

39-42

B. Formation energy

The formation energy of SWNT’s doped with nitrogen
(E‘;Op) can be written in terms of the cohesive energy per
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TABLE II. C-N and C-C bond lengths in A for first- and second-nearest neighbors, pyramidal angle © »
in different substitution configurations, as reported in Fig. 2. The values of the G and H configurations are
not shown since they correspond to the single substitution case.

Substitution ' 4 0,

mode dnN agR dgn agsd dg . (deg) )
A 1.43 1.43 1.40 1.43 15.1 0.94
B 1.55 1.39 1.42 1.40 1.42 18.8/10.1 0.91
C 1.40 1.44 1.39 1.43 13.8 0.96
D 1.39 1.43/1.44 1.42 1.42/1.43 11.7/10.8 0.99
E 1.38/1.41 1.44 1.40 1.42/1.43/1.44 13/8.8 0.96
F 1.38 1.43 1.40 1.43/1.44 11.0/8.7 0.99

atom of the pristine tube EP™ containing / carbon atoms. The
cohesive energy per atom of doped tubes with k£ nitrogen
atoms (Ef_N) is

) Eprisl_ IE
EEr]St= t l C’ (12)
EYP — kE\ ~ (I~ k)E,
EN= Nz Und) = (13)
E%op — Z(ElCcN _Egrist), (14)

where Efm‘, E‘;Op, Ec, and Ey denotes the total energy of the
pristine tube, the total energy of a doped tube, and the energy
of a single carbon and nitrogen atoms, respectively. We use
Ec=EP™/I as the reference energy of a carbon atom, and
En=1/2E,(N,) for a nitrogen atom. To compare the forma-
tion energy from different nanotubes as a function of concen-
tration, we can define a formation energy per substituted
atom,

EYP 4 kE.) — (EP™ + KE.
E_I;'N:( t C) k( t N). (15)

Figure 4 shows the formation energy for all configurations
containing two nitrogen atoms. We find that configurations

1.5
1.4 B

1.317 -—- N ]
I E}N 1

12 — E|

1.1f —
1+ |
m 0.9} A |

0.8;%-_% _______ %--.%-- __ - -7
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0.6 N
0.5

[eV]

2N

A B C D E F G H
Configurations

FIG. 4. Formation energies E; of isomers as presented in Fig. 2.
E}N is the formation energy of a single substitution while E}N is the
formation energy of a triple substitution.

with two associated nitrogen atoms are less stable which is
coherent with what has been previously reported.3*36-37:44
The largest energy difference between the most stable (C)
and the less stable (A) configuration is 0.58 eV per nitrogen
atom which compares relatively well with the differences of
0.46 (Ref. 34) and 0.77 eV (Ref. 36) per nitrogen atom for a
(10,0) tube, but is only half of the value published recently
for the (8,0) tube using cluster model calculation.” This dif-
ference can be attributed to the cluster model calculation in
which tubes are modeled with open ends terminated with
hydrogen atoms.?” Cluster model calculations tend to over-
estimate substitution energies, especially when a relatively
small tube section is used. From the difference in the forma-
tion energies we see that there is a driving force that ensures
that the nitrogen atoms are not neighbors. We find that the
most stable configuration is not the H configuration where
the nitrogen atoms are diametrically opposed, but the C con-
figuration. The formation energy of configuration C is even
smaller than a single substitution by 40 meV per nitrogen
atom. This indicates that the correlation between two addi-
tional electrons tends to improve the stability.

The high formation energy of the A and B configurations
can be explained by the energy cost to bind two nitrogen
atoms. We observe in configuration A (dyn=1.44 A) and B
(dyn=1.55 A) that the influence of the sp> bonding in its
neighborhood is important. The structure of the tube wall
keeps the nitrogen atoms bound to three neighbors. This ef-
fect is more pronounced in the A configuration where the
N-N bond direction is axial, while in B case, nitrogen atoms
can move slightly in radial direction decreasing the cohesive
energy. The same effect has been observed in the case of
(10,0) tubes with an energy difference between the two con-
figurations of 0.11 eV/atom (Ref. 34) and 0.31 eV/atom.3
This is clearly different from armchair tubes where it has
been shown that nitrogen atoms can be first nearest neigh-
bors associated with structural adjustments without increas-
ing the formation energy considerably.>*

Using the following definition of the formation energy of
the vacancy: E}’-a°=E;lef— (I-1)EP"™/1, where E?ef is the total
energy of the defective tube, we find 5.32 eV for the (8,0)
tube. This compares well with previous published estima-
tions of 4.8 (Ref. 41) and 5.5 eV (Ref. 42) but is relatively
high compared to the energy of a single substitution. The
total formation energy for a vacancy can be lowered consid-
erably by adding three successive substitutions to form a
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pyridinelike structure [Fig. 3(b)]. In this case the substitution
energy per nitrogen atom decreases by 0.99 eV which yields
a value which is close to the substitution energy in pristine
tube. This suggests that the formation of pyridinelike struc-
tures can be induced in a nitrogen rich atmosphere.

Our calculations show that nitrogen substitution induces
structural changes and increases the formation energy. We
use in the following the frozen-phonon approach to evaluate
the RBM frequency as a function of doping.

C. RBM frequencies of N-doped CNTs

RBM frequencies in pristine CNTs have been previously
calculated using zone folding,>**® classical mechanics,'’
and first-principles calculations.'®!8194 The effect of curva-
ture and chirality on the phonon spectrum has been investi-
gated analytically.’*-2

RBM Raman bands are resonantly enhanced when the
incident or the scattered photon coincide with one of the
singularities in the joined density of states.® The resonance
profile for RBMs is typically 50-80 meV wide for individual
SWNTs. The formation of excitons in CNTs has the effect to
lower the transition energies and modifies the tube structure
at the location of the exciton. Excitonic effects are not taken
into account in our frozen-phonon approach.

Considering the (8,0) pristine nanotube, and only taking
into account radial components,'®*® we obtain from our
PBE-based calculations, a RBM frequency of 357.3 cm™'.
This value agrees within 13 wave numbers with results of
Refs. 18 and 19, 363.6 and 370 cm™, respectively. The dif-
ference with the value of Kiirti ef al.'® is believed to be due
to the level of approximation used in the calculation. We use
here a more accurate approximation of the exchange-
correlation functional compared to earlier reports. It is
known that LDA tends to overbind carbon atoms which re-
sults in a contraction of the tube diameter and a large value
of the force constants. As a result, LDA calculations overes-
timate RBM frequencies. Using the PBE functional we ob-
tain smaller force constants and smaller tube diameters re-
sulting in smaller RBM frequencies. The agreement between
the DFT calculations and the one-dimensional spring con-
stant model is within 1.2 ¢m™! corresponding to an error of
less than 1%.

DFT calculations predict a downshift of —5.8 cm™' while
the one-dimensional spring constant model predicts a down-
shift of =3.4 cm™' for 3.1% nitrogen doping. The effect of
the additional electron is to downshift or soften the phonon.
This is consistent with results on Li-doped CNTs (Ref. 53)
and the study of oxygen-functionalized CNTs.>

As the doping concentration increases one has to take into
account the possible formation of N-N bonds. For the A and
B configurations (Fig. 2) the one-dimensional spring con-
stant model gives —4.8 ¢cm™!, which is smaller than DFT
calculation, —=9.1 cm™! (Table III). A second additional elec-
tron leads to larger structural modifications and a larger
downshift of the RBM band. For the other configurations,
i.e., from C to H, the downshift are smaller, ranging from
-2.9 to =7.2 cm™! using the DFT calculations.

The simple one-dimensional spring constant model cannot
discriminate between the different dopant sites and gives the
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TABLE III. RBM frequency of pristine (8,0) nanotube and ni-

trogen substitution induced downshifts as determined by DFT cal-

culations and one-dimensional spring constant model in cm™,

DFT SC model Downshift
Pristine 357.3 358.5
1-N 351.5 351.8 -5.8/-34
A 348.2 353.8 -9.1/-4.8
B 349.3 353.8 -8.0/-4.8
C 352.5 351.8 -4.8/-6.7
D 351.4 351.8 -5.9/-6.7
E 352.0 351.8 -5.3/-6.7
F 350.1 351.8 -7.2/-6.7
G 350.6 351.8 -6.7/-6.7
H 354.4 351.8 -2.9/-6.7
Vacancy 348.8 347.3 -8.5/-11.2
Pyridinelike 352.8 340.5 -4.6/-18.0

same downshift of —6.7 cm™! for all substitution configura-
tions. The one-dimensional spring constant model neglects
completely the local distortion induced by the nitrogen atom
as well as the correlation effects of the two extra electrons in
the unit cell considered in the calculation. The largest differ-
ence between the two methods occurs for the H configura-
tion. The small downshift in the highly symmetric configu-
ration is unexpected. This points to the fact that the
symmetry of the dopant sites is important for the RBM fre-
quency. In summary, nitrogen substitution leads to a down-
shift of =2.9 to =9.1 cm™' depending on substitution con-
figuration and softening of the chemical bonds.

Defects in the walls of CNTs have been experimentally
observed. Defects are believed to play an important role in
the structural dynamics of CNTs. Clearly, local structural dis-
turbances influence RBM frequencies. We find for a single
vacancy that the RBM frequency is downshifted by
—-8.5 cm™! using DFT which agrees well with a recent study
of the characteristic vibrational modes of a single vacancy in
a zigzag tube.’® The one-dimensional spring constant model
gives a larger downshift of —11.2 ecm™'. Vacancies and py-
ridinelike structures lead to structural modifications and
changes in hybridization which are not taken into account in
the one-dimensional spring constant model but are included
in the DFT calculations. We conclude that vacancies, py-
ridinelike structures in the tube wall, and nitrogen doping
induces downshifts of the same order of magnitude.

D. Electronic band structure

Figure 5 shows the calculated electronic band structure
for CNTs with one and two substitutions (in configuration C)
demonstrating a upshift of the Fermi level in doped nano-
tubes. The allowed optical transitions for pristine tube are
indicated following the interpretation of Spataru et al.,’® ne-
glecting many-body effects. Our DFT calculations compare
well with recently published work?! of the electronic band
structure of CNTs.
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Pure 1-N

FIG. 5. (Color online) Electronic band structures of pure, 1-N
doped and 2-N doped (C configuration) nanotubes. First optical
transitions of pristine (8,0) nanotube are also given. Fermi levels are
also given in dashed lines.

Experimentally, the lowest transition with respect to the
optical transition selection rules is detected in photolumines-
cence excitation spectroscopy after absorption to higher op-
tical transitions. Photoluminescence spectroscopy is limited
to semiconducting tubes whereas resonant Raman spectros-
copy applies to metallic and semiconducting tubes allowing
to study the transition E;;, E,,, or Ez; for all tubes. The
photoluminescence intensity for zigzag tubes is close to
zero'? and increases with chiral angle to be maximum for
armchair tubes.

Resonant Raman spectroscopy of RBMs can be per-
formed at different singularities in the joined density of
states corresponding to the transition £, and E,, with empty
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conduction bands. The splitting of the conduction bands for
E,, or E,, transitions is associated to the splitting of the
valence bands. The transition energy E;; increases by 0.05
eV, while the transition energy E,, decreases slightly by 0.09
eV with doping. These shifts in the transition energies are
comparable of the width of the Raman resonance profile of
individual tubes. Clearly, doping is expected to influence the
resonance profile but does not change the resonance condi-
tion drastically.

V. CONCLUSION

We have studied the influence of nitrogen doping in (8,0)
CNTs on the RBM using DFT calculations including the full-
potential PAW framework and frozen phonon approach. The
results are compared with a one-dimensional spring constant
model. Considering several doping configurations, we find
that the downshift of the RBM band depends on the exact
position of the dopant within the tube wall. The formation of
N-N bonds is not favored for zigzag tubes. Symmetric posi-
tion of the dopant leads to only small downshifts of RBM
frequencies. The one-dimensional spring constant model pre-
dicts similar frequency downshifts but, due to its simplicity,
different doping configurations cannot be discriminated.
Electronic structure calculations show that the resonant Ra-
man profile is expected to be shifted less than 0.1 eV when
doping or creating defects.
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